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Abstract—The detection of software clones is gaining more
attention due to the advantages it can bring to software mainte-
nance. Clone detection helps in code optimization (code present
in multiple locations can be updated and optimized once), bug
detection (discovering bugs that are copied to various locations
in the code), and analysis of re-used code in software systems.
There are several approaches to detect clones at the code
level, but existing methods do not address the issue of clone
detection in the PLC-based IEC 61131-3 languages. In this
paper, we present a novel approach to detect clones in PLC-
based IEC 61131-3 software using semantic-based analysis. For
the semantic analysis, we use I/O based dependency analysis to
detect PLC program clones. Our approach is a semantic-based
technique to identify clones, making it feasible even for large code
bases. Further, experiments indicate that the proposed method
is successful in identifying software clones.

Keywords- Software Clones, PLC programs, Software Main-
tenance, Software-Reusability.

I. INTRODUCTION

Maintenance costs of large software systems are high in
part due to a significant amount of duplicated code present in
it [1][2]. Thus, costs can be reduced if there are techniques
available to detect software clones. There is research to find
cloned code automatically for software re-usability, code op-
timization, plagiarism detection, extracting program features
and software bug detection [1][2][3]. Baxter et al. [3] define
a software clone as a piece of code that is structurally or
semantically similar to another part of a code. Definitions
of clones carry some indefiniteness, and this often causes a
clone detection process to be much more complicated than
the detection method itself [2].

There are several reasons to influence the software developer
to generate software clones [3][4][5], and clones can also be
introduced by accident [6][7][8]. Copying existing code, with

or without modification is a simple form of reuse procedure
which results in software but is frequently used by developers
as a cost-cutting technique [9]. Another approach of re-
using strategy is code forking [10]; forking re-uses similar
solutions that have diverged with the evolution of the software
system. For example, when creating a new software system,
re-using code of a similar project with slight modifications
as per the requirements. Because it can significantly reduce
production time, reuse of functionality and logic from existing
projects is often a good thing, especially when the features are
implemented in a library; though often code is simply copied.

Several surveys [11] show that 5-20% of the code is
similar in most software applications. One of the significant
shortcomings of copied code fragments is that bugs present in
one particular code fragment can be copied to duplicated code
fragments requiring each bug to be independently identified
and corrected. Re-organizing and re-using code is another
issue in software maintenance that causes repeated bugs [12].
Importantly, re-using bug-free code fragments is gaining more
importance to reduce development time and cost in same
domain applications [13].

A wide range of techniques and tools are available to detect
clones for high-level languages such as C, C++ and Java.
These tools offer limited support for PLC-based IEC 61131-
3 languages due to the change in syntactic and semantics of
the language. In this paper, we propose a method to detect
semantic clones in PLC-based IEC 61131-3 languages based
on I/O variable impact and dependency analysis.

The rest of this paper is organized as follows. The necessary
background and literature required for the proposed method
are defined in Section 2 and Section 3. A solution with
algorithms for semantic clone detection is described in Section
4. Then our results and discussions on a real-time system are



Fig. 1: PLC-based IEC 61131-3 Languages

presented in Section 5. Finally, Section 6 concludes the paper.

II. BACKGROUND

This section provides the necessary information and back-
ground required for our proposed semantic-based clone detec-
tion methods.

A. Clone Taxonomy

A taxonomy helps to understand the definition of software
clones. Most existing and typical definitions [11] of clones
are:

Code Fragment: A contiguous segment of code from a
software system.
Clone: A pair of code fragments that are similar, either
semantically or syntactically.
Type 1: Code fragments that are syntactically identical, except
for differences in white space and comments.
Type 2: Code fragments that are syntactically similar, except
for a difference in identifier names and literal values.
Type 3: Code fragments that are syntactically similar with
differences at the statement level.
Type 4: Code fragments that are semantically similar, but
syntactically different.

B. Overview of PLC-based IEC 61131-3 Languages

PLC-based IEC 61131-3 [14] describes Programmable
Logic Controller (PLC) programming languages and also
provides the concept and guidelines to create PLC projects.
A PLC is a computer used to control a machine and as-
sociated processes. PLCs are designed to control industrial
control systems and to be very flexible in how they interface
with inputs and outputs to the real world. A PLC has two
main components: 1) The Controller and 2) The input/output
section. The most important unit of PLC is a CPU module. The
CPU consists of a microprocessor, memory and other circuits
to control logic, monitoring and communications. I/O devices
consist of digital or analog devices. A digital I/O card handles

discrete devices which provide a signal that is either on or off
such as push-buttons and sensors.

In PLC-based IEC 61131-3 languages, Program Organiza-
tion Units (POUs) are considered as Blocks in a conventional
programming language. POUs are the independent software
units in an application and can be called with or without
parameters. There are three types of POUs: Function, Function
Block and a Program. Function and Function Block always
produce the same result for the same input, but the Function
does not have any memory to store data records. A Function
block has memory to store a data record and status informa-
tion. The Program represents a user’s PLC program which can
access I/O of the PLC.

Variable declaration in a POU consists of three parts: Input
variable declaration, Output variable declaration and Local
variable declaration. Input variables are the input signals to
POUs and Output variables are the return values of a POU.
Any other variable that belongs to a particular POU is con-
sidered as a Local variable. A POU is typically programmed
using one of the following programming languages:

1) Structured Text (ST): ST is a well-structured language
that supports a range of constructs for functions, as-
signments, expressions, conditional statements etc. ST is
familiar due to features like its compact, clear code layout
and well defined logical plan.

2) Instruction List (IL): Instruction list is a traditional PLC
language, and it is similar to simple machine assembly
language.

3) Ladder Diagram (LD): Ladder diagrams are schematic
diagrams commonly used in industrial control systems.
Ladder diagrams resemble a ladder with two vertical rails
to supply power and horizontal lines as rungs to represent
a control circuit.

4) Functional Block Diagram (FBD): Function block dia-
grams are a graphical and straightforward way to program
any functions together in a PLC program.



A simple fragment of code to give examples of the PLC-based
IEC 61131-3 languages is shown in figure 1 [15].

III. LITERATURE

Several tools [16] exist to detect clones. CCFinder [17] is
a multilinguistic token-based software clone detection system.
CCFinder transforms source code into tokens for comparison;
this method uses metrics to analyze the clones. Clone detective
[18] is a framework that helps to configure clone detection
processes. Ctcompare [19] is a tool to detect type 1 and type
2 clones. Ctcompare is a tool to lexically analyze the code and
produce a sequence of tokens. Then the sequence of tokens
is broken into overlapping tuples. Tuples are then hashed and
the hashed value is used to detect clones. Iclones [20] is a
framework for incremental analysis to detect clones. Iclone is
considered as a revision approach to identify clones (Analysis
of previously analyzed document). DECKARD [21] is a tree-
based approach to detect clones, where sub-trees are clustered
based on the similarity distance calculated in Euclidean space.
DECKARD provides an environment to identify type 1 and
type 2 clones. SourcererCC [22] is a tool to detect type 2
and type 3 clones. SourcererCC is based on inverted-index
to discover clones and SourcererCC filters the comparisons
required to detect the clones by analyzing token positions.

During the study of these tools, we found that they are
all based on token handling and tree-based analysis to detect
either syntactic or semantic clones but not the both. These tools
and clone detection techniques are also not defined to identify
clones in PLC-based IEC 61131-3 languages. IEC 61131-3
languages are different in structure and organization of code
as compared to other high-level languages.

IV. SEMANTIC CLONE DETECTION IN PLC-BASED IEC
61131-3 LANGUAGE

In this section, we define algorithms to find semantic clones
using I/O variable dependency analysis as summarized in
figure 2. The proposed semantic analysis is more effective
to identify syntactic differences and reordered statements.
Our approach uses semantic information to identify code
clones rather than syntactic structural information. Semantic
information may be control information, data type information,
data dependencies or similar information. To detect semantic
clones in ST programs, we developed algorithms based on
Output variable dependency-based analysis and Input variable
impact dependency. The proposed method is used with the
PLC-based IEC 61131-3 language Structure Text (ST) at two
different levels: 1) Output variable dependency slicing analysis
2) Input variable impact slicing analysis. In our method, we
analyze two types of dependency. Let Input be all inputs
to a POU and Output be all outputs of the POU, with
{in1, in2, in3, .., inn} ∈ Input, {out1, out2, out3, .., outn} ∈
Output, then the function fn(in1, in2, in3, .., inn) = outn,
represents the relationship between I/Os. The following de-
pendencies can then be defined:

1) Output variable depends on input.

∀{out}∈Output,∃{in1,in2}∈Input(out←− {in1, in2})

Fig. 2: I/O variable dependency analysis

2) Output variable depends on variables.

∀{out}∈Output,∃{v1,v2}∈V ariable(out←− {v1, v2})

where ←− is a variable data dependency relation and ‘Vari-
able’ is the set of variables present in the POU.

A. Output Variable Dependency Slicing Analysis

Analyzing output variables semantically in IEC 61131-3
language leads to an efficient way to detect code clones rather
than considering all the variables present in the POUs; this
efficiency is due to the importance of I/O information in
the controller applications. Analyzing I/Os of controller code
reduces complexity by excluding unnecessary analysis of all
variables in the code. To create output variable dependencies,
we execute the following steps:
• construction of AST
• extraction of statements
• assigning of unique identification number
• extraction of control statements
• extraction of data dependency
• creation of PDG
• output variable dependency slicing.
We used Abstract Syntax Tree (AST) of ST programs [23]

to extract statements for the purpose of Program Dependence
Graph (PDG) creation. Another important necessity to create
a PDG is assigning a unique number to each statement to
allow identification of each statement’s location. Algorithm



Algorithm 1 Variable Dependency(Dictionary <int, ParseTreeNode> ListNodes, Conditions)

1: for ( v=ListNodes.length, v ≥ 0, v–) do
2: if (ListNodes[v] of type Vdef∈Variable Definitions) then
3: ∃U∈vdependents

, ListNodes[v]variable def←−U, where ←− be the dependency relation
4: dependentvariables=parse(U)
5: for (d ∈ dependentvariables ) do
6: for ( i= v-1, i ≥ 0, i–) do
7: if (ListNodes[i] of type Vdef∈Variable Definitions&& d==ListNodes[i]variable def ) then
8: dependency definition location ←i;
9: for (con ∈ Conditions) do

10: if (i >= con.Start && i <= con.End) then
11: CondiStore.add(con)
12: end if
13: end for
14: Add dependency(d, dependency definition location, CondiStore)
15: end if
16: end for
17: end for
18: end if
19: end for

1 shows the sequence of steps to create program variable de-
pendency. ListNodes of type Dictionary<int, ParseTreeNode>
and Conditions of type Dictionary<int, int, ParseTreeNode>
are the input parameters to algorithm 1. ListNodes consist
of a unique statement number of type integer and program
statements in the form AST. Further, Conditions are control
statements information in a POU of the form <Start, End,
Condition>, where ‘Start’ and ‘End’ is the beginning and
ending point for each condition ‘Condition’. Furthermore in
the algorithm 1, the parse() is a method to extract dependent
variables (A ← B, A is a definition part and B is a dependent
part consists set of variables to define A). PDG is used to
extract output variable definitions dependency slices; PDG
slices are the semantic information which contain dependent
data for each output variable defined in the programs. Later,
output variable slices are used to analyze between two different
POUs using sequential matching methods.

Definition 1: Let {out1, out2, out3, ...., outn} ∈ POU be
the output variables belonging to each program organization
unit. ∀out ∈ POU , ‘out’ can be defined ‘j’ (0 < j < n) times
based on the program organization unit requirements. Output
variable dependency slices outslices can then be defined as

∀j , {πj
out ←− πj−1 ←− πj−2 ←− πj−3, .., πj−n} ∈ outslices

where πj
out is the output variable at ‘j’ position, πj−1 be

the dependent variables defined at ‘j-1’ position, ‘out’ denotes
output variable and ←− represents the variable dependency
relation. Common output variable slices outslicescommon is an
intersection between output variable slices belong to different
POUs.
∀out1slices∈POU1

,∀out2slices∈POU2
, then

{outslicescommon := out1slices ∩ out2slices}

To analyze between output variable dependency slices, we
considered the following features:
• Dependency among Data types, Direction, FD port, Initial

Value, Variable attributes of POUs.
• Conditions to hold in the dependency slices.

B. Input Variable Impact Dependency Slicing Analysis

Analyzing input variables semantically leads to an efficient
way to detect code clones and reduces complexity in the
analysis by excluding unnecessary analysis of program data
(considered input variable impact dependency). To create input
variable impact dependencies, we execute the following steps:
• construction of AST
• extraction of statements
• assigning of unique identification number
• extraction of control statements
• extraction of forward impact dependency
• creation of PDG
• slicing of input variable impact dependency.
The analysis steps for Construction of AST, Statements

Extraction, Assigning unique identification number and Con-
trol statements extractions are similar to the Output variable
dependency slicing analysis section. The program structure is
a combination of data dependence and control dependence;
in this case, the PDG encodes semantic information such
as variable impact dependency and control dependency uni-
formly. Algorithm 2 describes the variable impact dependency
extraction process, which is used for analysis of input variables
in each POUs.

Definition 2: Let {in1, in2, in3, ..., inn} ∈ POU be the
input variables belonging to each program organization unit.
∀in∈POU , ‘in’ can be used ‘j’ (0 < j < n) times based on the
program organization unit requirements. Input variable impact



Algorithm 2 Variable Impact Dependency(Dictionary <int, ParseTreeNode> ListNodes, Conditions)

1: for ( v=0, v ≤ ListNodes.length, v++) do
2: if (ListNodes[v] of type Vdef∈Variable Definitions) then
3: ∃U∈vdependents

, ListNodes[v]variable def←−U, where ←− be the dependency relation
4: for ( i← v+1, i ≤ ListNodes.length, i++) do
5: ∃U ′∈vdependents

, ListNodes[i]variable def←− U
′

6: dependentvariables=parse(U
′
)

7: Var=ListNodes[v]variable def

8: if Var∈dependentvariables && Var /∈ V ariableredefined) then
9: dependency definition location ←i;

10: for (con ∈ Conditions) do
11: if (i >= con.Start && i <= con.End) then
12: CondiStore.add(con)
13: end if
14: end for
15: Add dependency(d, dependency definition location, CondiStore)
16: end if
17: end for
18: end if
19: end for

dependency Inputslices slices defines as

∀j , {πj
in −→ πj+1 −→ πj+2 −→ πj+3, .., πj+n} ∈ Inputslices

πj
in is the input variable at ‘j’ position, πj+1 is the input

variable impact at j+1 position and −→ represents the im-
pact relation. Common input variable impact dependent slices
Inslicescommon as an intersection between input variable impact
slices belong to different POUs.
∀Input1slices∈POU1

,∀Input2slices∈POU2
, then

{Inslices
common := Input1slices ∩ Input2slices}

V. RESULTS AND DISCUSSION

Here we present the details of the experiment and results
considering both Output variable dependency slicing analysis
and Input variable impact slicing analysis.

A. Experiment Setup

The work described in this paper conducted with real-
world industrial applications from a large tech company in
the domain of industrial automation, robotics and electrical
equipment. We analyzed the machine control software system
implemented in PLC-based IEC 61131-3 language Structured
Text (ST). We considered libraries of a control software system
with a size threshold of minimum 1k LOC (line of code) at the
time of the study. We executed the proposed framework for ST
programming language using the following configuration. For
each library, we set the framework to generate clones using
five randomly selected POUs with a minimum of 1k LOC. We
considered all Code-blocks as one unit with an order (order is
an execution order of Code-blocks) specified by the POU.

Fig. 3: Data used for Input/Output dependency analysis

B. Experiments

We created sample data for 500 instances of type-3 and
type-4 I/O dependency and impact clone samples with the help
of domain experts in ST language for analysis. We extracted
AST for the programs, and we used the AST to create PDGs.
Table I represents the analysis of POU’s (CPID and CPIDAdv)
output variable dependent slices. In this table columns 1 and
3 represent the output variable names belonging to different
POUs, columns 2 and 4 represents the number of program
slices for each output variable defined in each POU, column
5 represents similar output variable slices between the POUs
and column 6 represents the Jaccard similarity index, which
indicates a similarity value among the POUs dependency
slices. Consider the parameters in the first row of table I



TABLE I: Output variable dependency slices analysis

POU1’s Output variable
name

No. times
output
variable
defined

POU2’s Output variable
name

No. times
output
variable
defined

Similar
slices count

Jaccard Co-
efficient

IPar 26 Interaction 48 22 0.42
BParrd 8 Pard 8 4 0.33
IPar 26 OutPar 1 0 0.00
IPar 26 HCmd 22 14 0.41
FeedOut 6 IPar 48 0 0.00
IPar 87 NameP 5 0 0.00
FeedFOut 6 FOut 1 0 0.00
FeedFOut 6 HCmd 22 0 0.00
IOP 21 InP 5 2 0.08
OutP 1 FOut 6 0 0.00
OutP 1 Outr 1 1 1.00
OutP 1 HCmd 22 0 0.00
HCmd 19 IPar 48 8 0.13
HCmd 19 FOut 6 3 0.13
HCmd 19 FOut 1 0 0.00
HCmd 19 HCmdP 22 14 0.51

TABLE II: Recall Measurements

Tool Intra-Library Clones Inter-Library Clones
Type-3 Type-4 Type-3 Type-4

SemClone 100% 97% 100% 97%
SMachine 97% 94% 97% 94%
SourcererCC 99% 0% 86% 0%
CCFinderX 70% 0% 53% 1%
Deckard 76% 1% 46% 1%
iClones 84% 0% 78% 0%
NiCad 100% 0% 100% 0%

with variable name IPar that belongs to CPID with output
variable definition dependency slices having a value of 26
and the variable named Interaction that belongs to CPIDAdv
with output variable definition dependency slices of 48. In the
5th column, the value 22 represents similar output variable
slices detected, and 0.4230 in a 6th column represents Jaccard
similarity index among POUs. Jaccard similarity index lies
between 0 and 1, with a value towards 1 representing similarity
increased. In row 3, the Jaccard similarity index is 0 indicating
that IPar and OutPar are not similar.

We extracted 500 features from both output dependency and
input impact dependency. Then we analyzed these features
with the sample data and calculated a recall for extracted
features. Recall results for various detectors, as compiled
from the source [24] are given in Table II. CCfinder [17],
NiCad [25], SourcererCC [22], Deckard [21] and iClones
[20] results indicated a 53-70%, 100%, 86-99%, 46-76% and
78-84% success rate in detecting type-3 clones, respectively.
SMachine [24] is a tool based on machine learning to detect
type-4 clones, obtained a recall of 94%. Proposed method
‘SemClone’ detects semantic clones with a recall of 97% for
type-4 clones and 100% for type-3 clones. We conclude that
our approach improves the detection of semantic clones in
PLC-based IEC 61131-3 Languages.

Figure 3 shows the amount of data (percentage of PDG
dependency slices) used by SemClone to analyze the POUs to
detect semantic similarity among the POUs. The first bar of

figure 3 shows data used to detect semantic similarity across
CPID and CPIDAdv POUs and indicated that only 33% and
49.7% of data was required to analyze CPID and CPIDAdv
POUs. This shows SemClone’s success at reducing the com-
plexity and thus the time required to analyze large POUs
and enhances the performance of the analysis to detect code
clones. The other columns show that these results are fairly
typical of the tool. Analyzing I/O in POUs helps to detect
code clones effectively and reduces complexity by reducing
the analysis of complete program variables. On testing on
the proposed method, we observed that less than half of the
data was required for analysis to detect code clones in PLC
programs.

VI. CONCLUSIONS

In this paper, we present a novel approach to detect clones
in the PLC-based IEC 61131-3 language using semantic-
based analysis. For the semantic analysis, we used I/O based
dependency analysis to detect PLC program clones. We used
output variable dependency-based analysis and input variable
impact usage analysis due to the importance of input and
output variables in PLC programs (inputs and outputs are the
signals which are essential to the operation of a controller).
Analyzing inputs and outputs variable dependency rather than
all data variables present in the program result in a great
reduction in the amount of data that needs to be processed
to detect software clones. Our approach is a semantic-based
technique to identify clones and performed better than existing
clone-detection methods to detect Type 3 and Type 4 software
clones.
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